Extended de Finetti theorems for boolean independence and monotone independence
نویسندگان
چکیده
منابع مشابه
Conditionally monotone independence
We define the notion of conditionally monotone product as a part of conditionally free product, which naturally includes monotone and Boolean products. Then we define conditionally monotone cumulants which are useful to calculate the limit distributions in central limit theorem and Poisson’s law of small numbers. Moreover, we introduce deformed convolutions arising from the conditionally monoto...
متن کاملGirth, minimum degree, independence, and broadcast independence
An independent broadcast on a connected graph $G$is a function $f:V(G)to mathbb{N}_0$such that, for every vertex $x$ of $G$, the value $f(x)$ is at most the eccentricity of $x$ in $G$,and $f(x)>0$ implies that $f(y)=0$ for every vertex $y$ of $G$ within distance at most $f(x)$ from $x$.The broadcast independence number $alpha_b(G)$ of $G$is the largest weight $sumlimits_{xin V(G)}f(x)$of an ind...
متن کاملDe Finetti Theorems for Easy Quantum Groups
We study sequences of noncommutative random variables which are invariant under “quantum transformations” coming from an orthogonal quantum group satisfying the “easiness” condition axiomatized in our previous paper. For 10 easy quantum groups, we obtain de Finetti type theorems characterizing the joint distribution of any infinite, quantum invariant sequence. In particular, we give a new and u...
متن کاملIndependence Results for n-Ary Recursion Theorems
The n-ary first and second recursion theorems formalize two distinct, yet similar, notions of self-reference. Roughly, the n-ary first recursion theorem says that, for any n algorithmic tasks (of an appropriate type), there exist n partial computable functions that use their own graphs in the manner prescribed by those tasks; the n-ary second recursion theorem says that, for any n algorithmic t...
متن کاملBoolean and Matroidal Independence in Uncertainty Theory
In this paper we discuss the nature of independence of sources in the theory of evidence from an algebraic point of view. Independence in Dempster’s rule is equivalent to independence of frames IF as Boolean sub-algebras. IF , however, cannot be explained neither in terms of classical matroidal independence, nor (even if finite families of frames form geometric lattices) as a cryptomorphic form...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Transactions of the American Mathematical Society
سال: 2017
ISSN: 0002-9947,1088-6850
DOI: 10.1090/tran/7034